

310

NEW YORK UNIVERSITY

JOURNAL OF INTELLECTUAL PROPERTY

AND ENTERTAINMENT LAW

 VOLUME 8 SPRING 2019 NUMBER 2

ESSAY: WHAT REMAINS OF FAIR USE FOR SOFTWARE

AFTER ORACLE V. GOOGLE?

SIMON J. FRANKEL AND ETHAN FORREST*

Two recent decisions from the Federal Circuit in the long-running litigation

between Oracle and Google have upended the scope of copyright protection

afforded to software. In both decisions, the court weighed in heavily on the side of

strong copyright protection, even protecting the relatively functional code

comprising application programming interfaces (APIs). In its most recent decision,

the court found that Google's use in its Android software of certain APIs from Java

was not fair use as a matter of law—notwithstanding a jury verdict of fair use. This

essay focuses on how the Federal Circuit treated the four statutory fair use factors

and suggests that the court's analysis, if applied by other courts, will make it very

difficult for any use of software to qualify as a fair use. This is because, at every

turn, the court's application of the fair use factors favors the copyright owner,

creating copyright risk for any borrowing of copyright code in a new program. It

remains to be seen if this approach will impact how software developers build on

preexisting programs.

* Simon J. Frankel is a partner with Covington & Burling LLP in San Francisco and a lecturer-

in-law at Stanford Law School. Ethan Forrest is an associate with Covington & Burling LLP in

San Francisco. The authors are grateful to Sean Howell, an associate with Covington, and Rachel

Dallal, a 2018 summer associate at Covington, for helpful assistance. The views expressed here

are those of the authors only, and do not necessarily reflect the views of Covington & Burling LLP

or any of its clients.

311 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

I. FACTOR ONE: THE PURPOSE AND CHARACTER OF THE USE314

II. FACTOR TWO: THE NATURE OF THE WORK ..317

III. FACTOR THREE: THE AMOUNT AND SUBSTANTIALITY OF THE USE319

IV. FACTOR FOUR: MARKET HARM ..320

V. OVERALL IMPLICATIONS ...322

The Oracle v. Google case involved approximately 11,500 lines of code, two

tech giants, and the birth of the now-ubiquitous Android operating system.1 The

Federal Circuit’s March 2018 decision marked the culmination of two jury trials,

two appeals, and years of litigation.2 As the litigation lurches towards a conclusion—

a damages trial remains, and Google is currently seeking Supreme Court review3—

we pause to consider what the Federal Circuit’s most recent decision may mean for

copyright’s fair use doctrine as applied to software.

For decades, courts have sought to achieve a careful balance between the

copyright protection afforded to computer code and the functionality that computer

code enables.4 That is, courts have recognized that although code can reflect

expressive choices, it is primarily functional and constrained, at least to some degree,

by the specific purposes it is designed to achieve.5 Consequently, courts have

generally held that defendants accused of infringing software are liable only for

literal copying of significant portions of underlying code.6

This approach to software—grounded in the primarily functional, rather than

expressive, nature of most programming—has often permitted developers to build

upon their predecessors’ advances, at relatively minimal risk of infringement

liability. Although some in Silicon Valley support this legal landscape, crediting it

1 Oracle Am., Inc. v. Google L.L.C. (Oracle IV), 886 F.3d 1179 (Fed. Cir. 2018).
2 See Oracle Am., Inc. v. Google Inc. (Oracle II), 750 F.3d 1339 (Fed. Cir. 2014).
3 Petition for Writ of Certiorari, Google L.L.C. v. Oracle Am., Inc., No. 18-956 (U.S. Jan. 24,

2019).
4 See, e.g., Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 535 (6th Cir.

2004) (“In ascertaining this ‘elusive boundary line’ between idea and expression, between process

and non-functional expression, courts have looked to two other staples of copyright law—the

doctrines of merger and scenes a faire.”).
5 See, e.g., id. at 548; Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir.

1995), aff’d, 516 U.S. 233 (1996); Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 709 (2d

Cir. 1992).
6 See, e.g., Apple Comput., Inc. v. Microsoft Corp., 35 F.3d 1435, 1439 (9th Cir. 1994), cert.

denied, 513 U.S. 1184 (“When the range of protectable and unauthorized expression is narrow, the

appropriate standard for illicit copying is virtual identity.”); Comput. Assocs., 982 F.2d at 714–15.

2019] WHAT REMAINS OF FAIR USE FOR SOFTWARE 312

with enabling the tech industry’s dynamism,7 others criticize it for failing to

adequately protect the creative efforts of rights-holders.8 The recent decision in

Oracle v. Google seems primed to address the concerns of the latter group by

restricting the circumstances under which the fair use defense will protect software

that incorporates parts of another program, however seemingly small or functional.

The case centered on Java, a programming platform owned by Oracle but

widely used throughout the tech world. In particular, the dispute involved Java’s

application programming interface, or API, and some of its associated software

libraries.9 The API is the interface designed to call functions from a different piece

of software, and includes a pre-programmed collection of source code packages,

each designed to execute a specific function.10 APIs’ function in this context is

analogous to shorthand or incorporation by reference, which allow writers to call up

complex or dense ideas without re-writing them every time. APIs are integral to the

software industry.11 Many APIs let engineers implement new code atop a pre-

existing framework with which other programmers are already comfortable and

familiar.12 In other words, they provide a common foundation upon which developers

can build compatible products using a mutually comprehensible language.

Oracle generally encourages the incorporation of its Java APIs into new

software.13 Depending on the circumstances, the company may license such use, or

even allow it for free.14 However, Google did not obtain a commercial license to use

the Java APIs in order to develop the Android operating system or comply with

7 See Brief Amici Curiae of Am. Comm. for Interoperable Sys. & Comput. & Commc’ns Indus.

Ass’n in Support of Appellant Connectix Corp. at 3, Sony Comput. Entm’t, Inc. v. Connectix

Corp., 203 F.3d 596 (9th Cir. 2000) (No. 99-15852), 1999 WL 33623859, at *3 (expressing

concern that providing too much copyright protection for software “would render unlawful

software development processes used every day in Silicon Valley”).
8 See Annette Hurst, The Report of API Copyright’s Death Is Greatly Exaggerated, 31 HARV.

J.L. & TECH. 491, 492–93 (2018) (arguing for a broad interpretation of when software is

expressive, and thus entitled to copyright protection); Ralph Oman, Computer Software as

Copyrightable Subject Matter: Oracle v. Google, Legislative Intent, and the Scope of Rights in

Digital Works, 31 HARV. J.L. & TECH. 639, 645 (2018) (arguing that the functional nature of

software code should not preclude copyright protection).
9 See Oracle Am., Inc. v. Google Inc. (Oracle II), 750 F.3d 1339, 1348 (Fed. Cir. 2014).
10 See id. at 1348–50; Oracle Am., Inc. v. Google L.L.C. (Oracle IV), 886 F.3d 1179, 1186-88

(Fed. Cir. 2018).
11 Brief of Amici Curiae Comput. Scientists in Support of Petitioner at 13, Oracle Am., Inc. v.

Google Inc., 750 F.3d 1339 (Fed. Cir. 2014) (No. 14-410).
12 See Oracle II, 750 F.3d at 1349.
13 See Oracle IV, 886 F.3d at 1187.
14 Id.

313 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

Oracle’s terms for a free license.15 Confronted with the magnitude of Android’s

success, and harboring its own interest in preserving Java’s role and relevance in the

smartphone and tablet industry, Oracle sued for patent and copyright infringement.

At the initial trial in 2012, the jury split on the two claims, finding copyright

infringement but no patent infringement.16 Following trial, however, the judge

delivered a complete victory for Google, ruling as a matter of law that the Java APIs

were not copyrightable.17 Oracle appealed the copyright claim to the Federal

Circuit—which had jurisdiction because the original suit included a patent claim and

the Federal Circuit has exclusive jurisdiction over all appeals from cases where the

original jurisdiction was based, at least in part, on a patent claim.18 In a controversial

2014 opinion, the panel held that the Java APIs were sufficiently creative to warrant

copyright protection, remanding Google’s fair use defense to the district court for

trial.19

The jury in the second trial found that Google’s reimplementation of the APIs

was fair use.20 Once again, Oracle appealed. And once again, the Federal Circuit

reversed,21 issuing an opinion that—particularly if applied beyond the facts of the

Java dispute and adopted by other circuits or the Supreme Court—has the potential

to significantly alter the topography of software copyright law by narrowing the

applicability of fair use in cases involving code.

Much of the commentary on the decision has focused on the Federal Circuit’s

approach to the jury’s verdict.22 The court gave strikingly little deference to that

general verdict finding fair use, explaining that deference was not appropriate as to

“legal facts”—only as to “historical facts.”23 We do not address this issue beyond

noting that the Federal Circuit’s approach suggests that, going forward, fair use

decisions will rest even more firmly in the hands of judges and not juries, giving the

court’s reasoning additional weight.

15 Id.
16 Oracle Am., Inc. v. Google Inc. (Oracle I), 872 F. Supp. 2d 974, 976 (N.D. Cal. 2012).
17 See id.
18 28 U.S.C. § 1295(a)(1) (2012).
19 Oracle Am., Inc. v. Google Inc. (Oracle II), 750 F.3d 1339, 1358-73 (Fed. Cir. 2014).
20 Oracle IV, 886 F.3d at 1186.
21 Id.
22 See, e.g., David Nimmer, Juries and the Development of Fair Use Standards, 31 HARV. J.L.

& TECH. 563 (2018).
23 Oracle IV, 886 F.3d at 1192–96.

2019] WHAT REMAINS OF FAIR USE FOR SOFTWARE 314

Accordingly, the court’s reasoning on the fair use factors is the focus here.

Parts I through IV discuss the four statutory fair use factors and how the Federal

Circuit interpreted them. Applying the court’s logic, three of these four factors would

typically—if not always—weigh against a finding of fair use in software cases, while

the remaining factor would carry only minimal weight, making fair use a tough

argument in most software infringement cases.24 As a result, and as we explain in

Part V below, technology companies interested in building new products using

another company’s APIs are likely to have a harder time proving that any alleged

copying was fair use—and may be more reluctant to rely on fair use in their

development decisions. Still, subsequent courts may view the Federal Circuit’s

ruling as a one-off decision, limited to its arguably unique facts and parties.

I

FACTOR ONE: THE PURPOSE AND CHARACTER OF THE USE

The Federal Circuit began its analysis of the jury verdict with the first of the

four fair use factors: the purpose and character of the defendant’s use.25 As a first

step, the court evaluated the degree to which Google’s use of the Java APIs was

commercial.26 The more that a given use can be described as purely commercial, the

more challenging it is to be ruled fair—even though many courts have held that

wholly commercial uses do not necessarily negate fair use.27 At trial, Android’s

commerciality was a disputed factual question before the jury, which heard evidence

both of Android’s immense success and of Google’s practice of making the

operating system open-source and available free of charge.28 The jury apparently

gave weight to these non-commercial considerations in its general verdict of fair use.

Yet the Federal Circuit ultimately held that, because Google’s purpose in using the

APIs was fundamentally commercial—for use in phones, which are commercial

24 The four non-exhaustive fair use factors as set out in 17 U.S.C. § 107 are:

(1) the purpose and character of the use, including whether such use is of a commercial nature

or is for nonprofit educational purposes;

(2) the nature of the copyrighted work;

(3) the amount and substantiality of the portion used in relation to the copyrighted work as a

whole; and

(4) the effect of the use upon the potential market for or value of the copyrighted work.
25 17 U.S.C. § 107(1) (2012).
26 Oracle IV, 886 F.3d at 1196-97.
27 See, e.g., Blanch v. Koons, 467 F.3d 244, 254 (2d Cir. 2006); Sega Enters. Ltd. v. Accolade,

Inc., 977 F.2d 1510, 1522 (9th Cir. 1992).
28 Oracle IV, 886 F.3d at 1197.

315 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

products—any other “non-commercial motives [were] irrelevant as a matter of

law.”29

Such reasoning appears to convert the first factor’s commerciality analysis

from a spectrum—where non-commercial motives might cut in favor of fair use,

despite otherwise commercial features—to a binary choice. If the purpose of the use

is meaningfully commercial, other mitigating considerations such as free

distribution or open source code become irrelevant as a matter of law.30 This poses

a potentially significant hurdle for software cases, where most (if not nearly all)

developers have at least partly commercial motives regardless of how freely

accessible or modifiable they make their code. These motives render the developers’

software, by the Federal Circuit’s reasoning, entirely commercial. The court’s

approach would therefore limit the extent to which a defendant can dispute

commerciality in a software case.

The Federal Circuit’s ruling presents defendants with similar obstacles

regarding the second element of the first fair use factor, which considers whether the

use was “transformative.”31 Transformative use—a use that adds something new,

altering the purpose or character of the underlying material—generally favors

finding fair use.32 But when evaluating the transformative quality of a work, courts

must first grapple with the question of what that work actually is. For instance, in

this case, is it the original APIs themselves? Or is it the APIs as reimplemented for

their new context, a novel smartphone operating system? With software, the

approach to this inquiry will generally decide the outcome of the factor one analysis.

After all, an API in itself only has one purpose: to let one program talk to another.

But in the context of a fuller software ecosystem, an API adapted for one

implementation could have very different functionality than it would adapted in

another implementation.

Here, the Federal Circuit focused primarily on the purpose of the APIs

themselves, rather than on the larger context of how Google had specifically

incorporated the APIs into the Android operating system.33 Google did not

appropriate Java code in its entirety. Instead, Google copied key definitional aspects

29 Id.
30 Id.
31 Id. at 1198 (“[T]he Supreme Court has stated that the ‘central purpose’ of the first fair use

factor is to determine ‘whether and to what extent the new work is transformative.’”) (quoting

Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 579 (1994)).
32 See Campbell, 510 U.S. at 579.
33 Oracle IV, 886 F.3d at 1197–1204.

2019] WHAT REMAINS OF FAIR USE FOR SOFTWARE 316

of Java code including structure, sequence, and organization (SSO) for a specific

purpose: clarifying which specific Java methods would be implemented.34 For

instance, the math declarations in Android still called up the math methods originally

defined in Java, although Google had rewritten the implementation portions of those

methods.35 So, the “max” method in Android would find the maximum of two

numbers—just as that method did in Java—but the underlying code in Android was

totally different from the corresponding Java code. Even so, the court seemed to

limit its focus here to what Google’s code did, as opposed to how the code was

written as compared to Oracle’s code.36

By focusing on APIs’ methods in themselves, divorced from the overall

context in which they appear, the court may have made it difficult for almost any

use of software to qualify as transformative in the fair use analysis. In a sense, all

declaratory code structured in a certain way has one primary purpose—to execute

the defined function. As Google argued, such code cannot both remain itself and

acquire new purpose or use unless its context changes and the original method

interacts with new implementations, creating something arguably new and

transformative—such as a new type of operating system. But even in such a

situation, the copied declaratory code retains its original purpose in a broad sense

because it still orders a computer to perform the command for which it was defined.

That portion of code was written to command a certain task and regardless of context

will always command that task, whether in an operating system, ride-sharing app, or

something else.

This is in contrast to other “functional” yet expressive works—a news

photograph, for example. Speaking generally, code orders a computer to perform

commands, while photographs convey information. But one’s perception of the

information a photograph conveys can change significantly depending on the

photograph’s use or the context of its presentation. A photograph’s expression of

information could be serious in one context or parodic in another, with just a few

elements changed. For example, in the Second Circuit’s 1998 opinion in Leibovitz

v. Paramount Pictures Corp., a movie studio Photoshopped comic actor Leslie

Nielsen’s head onto the body of a naked pregnant woman, to promote the actor’s

new film.37 Nielsen’s head aside, the lightning and body positioning were almost

identical to those elements from a famous photograph of Demi Moore, taken by

34 Oracle Am., Inc. v. Google Inc. (Oracle III), 2016 WL 3181206, at *4–5 (N.D. Cal. June 8,

2016).
35 Id. at *3–7.
36 Oracle IV, 886 F.3d at 1199–1202.
37 Leibovitz v. Paramount Pictures Corp., 948 F. Supp. 1214, 1215 (S.D.N.Y. 1996).

317 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

portraitist Annie Leibovitz. Leibovitz sued Paramount for copyright infringement,

but the court ruled the use was fair: compared to Leibovitz’s serious portrait,

Paramount’s poster clearly parodies the original.38 Placed in a new context, such

works can serve entirely new purposes. They can communicate a very different

message in a different context, even if the underlying work does not change much

or at all.

Similarly, software can be used in different contexts to achieve different

results. But under the Federal Circuit’s analysis, declaratory code always has the

same “purpose”—unless, in the somewhat limited example the court offered, the

code is used for such a different “purpose” as “teaching how to design an API.”39 As

the court elaborated, “merely copying the material and moving it from one platform

to another without alteration is not transformative,” even if the material is used in a

new context that, viewed holistically, produces a new and very different work.40

Indeed, as the court explained, the fact that “Google wrote its own implementing

code [was] irrelevant” to the analysis because the underlying APIs themselves were

unaltered.41

This reasoning suggests that almost any use of software code in a new

context—save perhaps uses for instructional purposes—will fail the first fair use

prong. At a minimum, this logic suggests that almost no use of pre-existing APIs

could be transformative unless its specific function were modified in some way. But

this would likely mean that the declaratory code was, to some significant degree, no

longer the same code at all.

II

FACTOR TWO: THE NATURE OF THE WORK

Under the second fair use factor, a court analyzes the nature of the copyrighted

work.42 It evaluates whether the copied material is more creative—and therefore

nearer the heart of copyright protection—or more functional, informational, or

factual.43 Typically, fair use is “more difficult to establish” when the copied work is

38 Id. at 1226.
39 Oracle IV, 886 F.3d at 1201.
40 Id.
41 Id.
42 17 U.S.C. § 107(2) (2012).
43 See Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 586 (1994).

2019] WHAT REMAINS OF FAIR USE FOR SOFTWARE 318

predominantly creative, but easier to establish when the copied work is less

creative.44

In this case, the Federal Circuit recognized that the Java APIs were

substantially functional, even if they “involved some level of creativity.”45 As the

Federal Circuit acknowledged, this should usually cut in favor of fair use.

Presumably, the jury’s fair use verdict reflected a finding that the APIs at issue were

closer to the functional end of the spectrum of creativity. But the court ultimately

concluded that factor two should generally not figure significantly one way or the

other in the fair use analysis, because giving significance to this factor “could

effectively negate Congress’s express declaration—continuing unchanged for some

forty years—that software is copyrightable.”46

Notably, the Federal Circuit seemed to view the case as being about software

generally—not about APIs in particular. Software as a category can include a range

of code, from implantation code, to APIs, to simple programs, to functional but

highly complex and creative programs, to abstract or purely expressive programs.

But the Federal Circuit did not cabin its analysis to APIs or even extremely

functional, though still protectable, programs.47 Rather, it treated all code as software

and all software as protectable, such that its particular degree of creativity should

not be discounted at all in the fair use analysis.48

Perhaps the Federal Circuit panel felt constrained by its broad 2014 ruling on

protectability of APIs, making it harder for the court to draw nuanced lines between

expression and functionality in its decision on fair use.49 In any event, the court’s

approach to the second factor presents a hurdle for software copyright defendants

claiming fair use. Given the functional nature of much code, one might presume that

this factor should nearly always favor the defendant—whether or not the factor was

significant in the overall balancing of factors in a specific case. But the Federal

Circuit’s approach essentially reads this factor out of the statute, rendering it at best

neutral in software cases.

44 See id.
45 Oracle IV, 886 F.3d at 1205.
46 Id.
47 See id.
48 See id.
49 See Oracle Am., Inc. v. Google Inc. (Oracle II), 750 F.3d 1339 (Fed. Cir. 2014).

319 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

III

FACTOR THREE: THE AMOUNT AND SUBSTANTIALITY OF THE USE

The Federal Circuit’s analysis of the third fair use factor, which evaluates “the

amount and substantiality of the portion used in relation to the copyrighted work as

a whole,”50 similarly seems tilted against finding fair use in cases involving software

code. At trial, the jury’s general verdict apparently reflected a factual determination

that Google had copied a relatively small portion of the work at issue—the 37 API

packages of the Java codebase.51 Although the parties had stipulated that only 170

lines of code were necessary for programmers to write in the Java language, Google

had copied approximately 11,500 lines of code.52 But this was a tiny percentage of

the roughly 5 million lines of code in Java as a whole.53

The Federal Circuit, however, did not dwell on whether Google copied only

a very small portion of the “copyrighted work as a whole,” as the statute says.54 In

not doing so, the court’s approach arguably deviates from the approach most courts

have used since the Supreme Court’s 1985 decision in Harper & Row v. Nation

Enterprises, which focuses on the percentage of the whole and significance of what

the defendant copied.55 Instead, the Federal Circuit was more concerned with the fact

that Google had copied certain APIs in their entirety, regardless of the fact that those

APIs were a small fraction of the total number of lines of codes comprising the Java

programming environment.56 This narrow approach mirrored the court’s

transformative use inquiry, which considered only the copied code by itself, as

opposed to in its new context. The court’s approach also resulted in a similarly

defendant-unfriendly finding. Because Google copied entire APIs, this factor

counted against fair use even though what Google copied was not much compared

to the “copyrighted work as a whole”—so long as the “work” is limited to constituent

pieces of a bigger, more comprehensive, piece of software.57

The court also stressed that the portions copied by Google could not be

“qualitatively insignificant, particularly when the material copied was important to

the creation of the Android platform.”58 First, this reasoning inverts the way courts

50 17 U.S.C. § 107(3) (2012).
51 Oracle IV, 886 F.3d at 1206.
52 Id.
53 Id.
54 17 U.S.C. § 107(3).
55 Harper & Row, Publishers, Inc. v. Nation Enters., 471 U.S. 539, 564–66 (1985).
56 Oracle IV, 886 F.3d at 1206–07.
57 Id.
58 Id. at 1207.

2019] WHAT REMAINS OF FAIR USE FOR SOFTWARE 320

have generally approached the third factor, as it focuses on the significance of the

copied material to the defendant’s work instead of its significance to the plaintiff’s

work.59 Second, even focusing on the significance to defendants, Google copied only

37 of the 168 APIs in the Android platform,60 meaning even relatively small portions

satisfy the significance test the Federal Circuit used. This approach seems to put a

heavy thumb on the scale of the fair use analysis. Because practically any copied

code will serve a function in the defendant’s program, such code will usually be

“important.”61 Again, the Federal Circuit’s approach, if followed by other courts,

makes it likely that the third factor will generally favor the software copyright

holder.

IV

FACTOR FOUR: MARKET HARM

The fourth fair use factor considers how the defendant’s work affects the

market for the original, with any market harm cutting against finding fair use.62 This

market includes potential future markets for derivative uses of the original, including

unrealized works that the copyright holders or licensees may develop.63 The Federal

Circuit again found that this factor favored Oracle.64

The court focused on Android’s potential to harm Oracle’s efforts in the

smartphone industry. Although the jury’s general verdict seemingly reflected

agreement with Google’s argument that the Java APIs’ market was limited to

desktop and laptop computers, Oracle pointed to evidence that it had licensed Java

for use in early smartphones before Google created the more-sophisticated Android

operating system.65 The Federal Circuit was persuaded that this presented

problematic market harm Oracle could have suffered. It stated that smartphones were

a “traditional, reasonable, or likely to be developed market” subject to the factor four

analysis.66 It also pointed to evidence that Android was already being used as a direct

substitute for Java—such as when Amazon negotiated a discounted Java licensing

59 See, e.g., Peter Letterese & Assocs., Inc. v. World Inst. of Scientology Enters., 533 F.3d

1287, 1314 (11th Cir. 2008); Consumers Union of U.S., Inc. v. Gen. Signal Corp., 724 F.2d 1044,

1050 (2d Cir. 1983).
60 Oracle Am., Inc. v. Google Inc. (Oracle II), 750 F.3d 1339, 1350-51 (Fed. Cir. 2014).
61 Oracle IV, 886 F.3d at 1207.
62 17 U.S.C. § 107(4) (2012).
63 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 590 (1994); Harper & Row, Publishers,

Inc. v. Nation Enters., 471 U.S. 539, 568 (1985).
64 Oracle IV, 886 F.3d at 1210.
65 Id. at 1209.
66 Id.

321 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

fee from Oracle based on Android being a free alternative.67 This, for the court,

proved actual market harm.68

This may be the right result on the facts before it, but the Federal Circuit’s

broad approach can be read to suggest that functional code—if not other works—

will very often be perceived as having a broad potential market. The court’s

reasoning appeared to be that almost any market where a copyrighted work, or part

of it, can be used is within the “potential market” of the copyright holder.69 As the

court explained, “a market is a potential market even where the copyright owner has

no immediate plans to enter it or is unsuccessful in doing so.”70 Under this reasoning,

once a copyright defendant has succeeded in a market using the plaintiff’s work, that

market is almost necessarily a “potential market” the plaintiff might have

exploited—and has therefore lost—because of the defendant’s copying. As a result,

the fourth factor will usually favor the plaintiff, as it did here.

The Federal Circuit also emphasized that the two companies had previously

been involved in licensing negotiations regarding the potential use of Oracle’s Java

software in a Google smartphone.71 Although these negotiations were unproductive,

the court regarded their existence as further evidence of Oracle’s longstanding

interest in entering the smartphone market.72 While this reasoning may have a certain

logic, it is also puzzling. Courts analyzing fair use have sometimes considered

whether the defendant sought permission to copy the plaintiff’s work, but they have

usually asked this question in the context of the first factor, in looking at the

character of the use.73 Cautioning against taking the issue too far, the Supreme

Court’s decision in Campbell v. Acuff-Rose suggested that unsuccessfully seeking

permission should not be read to show bad faith inconsistent with fair use. The Court

reasoned: “[i]f the use is otherwise fair, then no permission need be sought or

granted.”74 Perhaps trying to avoid the issue, the Federal Circuit said it was not

67 Id.
68 Id. at 1209–10.
69 Id. at 1210.
70 Id. (citations omitted).
71 Id. at 1209.
72 Id. Notably, the negotiations did not concern the limited portions of code Google actually

copied—they were about the entirety of the Java APIs, including all interfaces and implementing

code. See Oracle Am., Inc. v. Google Inc. (Oracle III), 2016 WL 3181206, at *11 (N.D. Cal. June

8, 2016).
73 See Simon J. Frankel & Matt Kellogg, Bad Faith and Fair Use, 60 J. COPYRIGHT SOC’Y U.S.

1, 9–12 (2012).
74 Campbell v. Acuff-Rose Music, Inc., 510 U.S. 569, 585 n.18 (1994).

2019] WHAT REMAINS OF FAIR USE FOR SOFTWARE 322

considering that the negotiations were unsuccessful—only that they showed

“Oracle’s interest in the potential market for smartphones.”75

This explanation arguably proves too much. Of course, there will only be

litigation over fair use when licensing negotiations are unsuccessful. Otherwise,

infringement claims are unlikely to arise. But the fact that a party approaches a

copyright holder and seeks a license does not mean that the copyright holder—here,

Oracle—necessarily has an “interest in the potential market.”76 Most copyright

holders, presented with a request to license their works for new uses, would probably

be willing to at least consider negotiating. However, such willingness to negotiate

does not mean the copyright holder would have exploited the market on its own. In

essence, the Federal Circuit seems to have taken failed license negotiations—which

Campbell effectively banned from consideration under the first factor—and

evaluated them under the fourth factor through the guise of market harm.77 Time will

tell if other courts adopt this approach.

V

OVERALL IMPLICATIONS

The Federal Circuit’s analysis appropriately focused on the facts before the

court. And it may well be that on those facts, reasonable minds could disagree about

the appropriate result. But stepping back, the court’s analytical approach to the fair

use factors may have the long-term effect of tilting the fair use playing field sharply

against defendants in software code cases.

Perhaps most striking, the Federal Circuit’s analysis of the first fair use factor

appears to make it very difficult for defendants accused of infringing API packages

and their SSO to show they are using the APIs for a new and different purpose, such

that it would qualify as “transformative.” Outside of some kind of teaching context,

as the Federal Circuit suggested,78 the API packages will almost always be serving

the same narrow function in the defendant’s work as in the plaintiff’s, even if the

overall work where the copied APIs appear or the implementation is new and

different. Combined with the court’s analysis of the other three factors—which will

almost always either disfavor fair use or be neutral when computer code is at issue—

it is difficult to conceive of circumstances where using more than a shred of an SSO

or API (other than for teaching, perhaps) can now qualify as fair.

75 Oracle IV, 886 F.3d at 1209 n.14.
76 Id.
77 Campbell, 510 U.S. at 585 n.18.
78 Oracle IV, 886 F.3d at 1201.

323 N.Y.U. JOURNAL OF INTELL. PROP. & ENT. LAW [Vol. 8:2

If this understanding of the Federal Circuit’s analysis is correct, it may

become harder for one developer to use another’s APIs in new products. After all,

one apparent result of the court’s analysis is that it may now be more difficult to

make a fair use of software, as compared to use of a more expressive work. If this is

the opinion’s practical result, Oracle v. Google departs from the common view that

fair use should be a more accessible defense where, as with software, the disputed

material is mostly functional.79 Again, only time will tell if that is the effect of the

Federal Circuit’s decision—or if the decision turns out to be one largely limited to

its unusual facts, regarding a discrete portion of functional code, copied to make a

new and unusually successful product. It is also possible that courts will look to other

copyright doctrines, such as merger or scènes à faire, to allow borrowing of APIs to

some extent. Such doctrines may become more prominent if fair use fades. For now,

however, the potential application of fair use to software appears substantially

diminished, and the practical impact of the Federal Circuit’s decision on software

development remains to be seen.

79 See, e.g., Sony Comput. Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 605 (9th Cir. 2000);

Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1522 (9th Cir. 1992).

