
 

 

 

 

Portfolio Media. Inc. | 111 West 19th Street, 5th Floor | New York, NY 10011 | www.law360.com 
Phone: +1 646 783 7100 | Fax: +1 646 783 7161 | customerservice@law360.com  

 

AI In Lending: Key Challenges And Practical Considerations 

By David Stein (August 9, 2018, 1:03 PM EDT) 

Artificial intelligence, or AI, has enormous potential to enable the financial services 
industry to make better decisions in lending-related activities. The U.S. Treasury 
Department’s recent report on nonbank financials, fintech and innovation 
discussed the use of AI in financial services and identified certain legal challenges 
presented by AI and related technologies.[1] Recognizing the potential benefits of 
AI, the Treasury Department recommended that regulators “not impose 
unnecessary burdens or obstacles to the use of AI” and related machine learning 
technologies, but instead “provide greater regulatory clarity” to promote “further 
testing and responsible deployment of these technologies” by regulated financial 
services firms.[2] 
 
There is little risk of U.S. financial regulators taking proactive steps to restrict or quash the use of AI in 
financial services. Nonetheless, existing laws and regulations adopted long before the advent of AI-
based financial services applications remain in effect and regulators must enforce them. The challenge, 
therefore, is how to deploy AI in financial services consistent with established legal and regulatory 
frameworks. 
 
This article focuses on using AI in lending. Following a brief overview of AI, this article discusses 
similarities and differences between AI and traditional lending tools, identifies key legal and regulatory 
issues, and offers practical tips for using AI in lending applications. 
 
Overview and Terminology 
 
Artificial intelligence is an umbrella term for a group of technologies that enable computer algorithms to 
simulate aspects of human intelligence and behavior, such as decision-making, learning, generalizing 
and reasoning. Artificial intelligence encompasses, among other things, machine learning and deep 
learning. 
 
Machine learning is a set of statistical techniques for coding a computer system or algorithm to parse 
data, identify patterns in the data, translate those patterns into rules, and make determinations or 
predictions based on the data. The translation of identified data patterns into rules gives the algorithm 
the ability to improve its performance over time or “learn” through experience based on the data it 
evaluates without explicit programming or human intervention. 
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Deep learning is a class of machine learning that uses multiple layers of neural networks to identify and 
process large amounts of raw data in a cascade or waterfall for the purpose of discovering nonlinear 
patterns or representations in the data. This layered neural network structure is modeled after a 
biological nervous system. The data patterns or representations detected by the algorithm can be 
translated into conclusions or rules and applied as additional data is evaluated. Advances in deep 
learning combined with the rich data sets available through big data is driving the development of 
commercial applications of AI. 
 
Artificial Intelligence in Lending: What’s the Same and What’s New 
 
Artificial intelligence-based algorithms can be used in a range of lending applications, including credit 
underwriting, credit scoring, target marketing, collections, fraud screening and identity verification 
models. AI-based algorithms bring new features and functionality to lending platforms, but also share 
many common attributes with current lending practices and tools. 
 
Certain lending attributes remain the same despite the introduction of AI-based algorithms. First, 
automated algorithms have been used in lending for decades. Examples include automated 
underwriting systems, credit scoring models and fraud screening models. An AI-based lending algorithm 
is simply another form of automated algorithmic tool for evaluating loan applicants, borrowers or 
prospects. 
 
Second, there is a long history of making credit decisions based on the output of proprietary “black box” 
algorithms, where the underlying computer logic — the secret sauce — is shielded from regulatory and 
public scrutiny. Proprietary credit scoring models and fraud screening tools are good examples of such 
“black box” algorithms. An AI-based lending algorithm is just another type of “black box” algorithm and 
the lack of transparency is nothing new. The inability of regulators or others to review and analyze the 
decision-making process followed by AI-based lending algorithms is no different than the current state 
with regard to many proprietary non-AI algorithms used in lending today. 
 
Third, lending algorithms that do not rely on artificial intelligence increasingly consider nontraditional 
data and big data. For example, newer credit scoring models designed to evaluate consumers with 
limited credit histories consider utility and rental payment histories and other nontraditional data. 
Similarly, target marketing, fraud screening and identity verification models increasingly are 
programmed to evaluate big data even when the underlying algorithm does not use AI. 
 
Two features of AI-based algorithms, however, represent a substantial change for lending models. First, 
the operational structure of AI-based algorithms differs significantly from non-AI algorithms. Traditional 
lending algorithms are programmed to make specific, repeatable decisions in different scenarios. These 
algorithms operate in a task-specific or deterministic manner. By contrast, AI-based algorithms are 
programmed to discover patterns in large amounts of data, translate those patterns into decisions or 
classifications, and automatically improve and refine algorithmic rules based on experience. AI-based 
lending algorithms are designed to simulate human decision making, learning, generalizing and 
reasoning and to apply what the algorithm discovers from its analysis of data across a range of scenarios 
with minimal human programming. As a result, decisions or classifications made by an AI-based lending 
algorithm may not be fully repeatable or explainable. 
 
Second, AI-based algorithms have the capacity to evaluate large volumes of big data and identify 
patterns and relationships in the data that may be too complex or subtle for humans to identify or for 
human programmers to code. This ability to detect and analyze such data patterns or relationships sets 



 

 

AI-based algorithms apart from traditional lending algorithms. At the same time, the power of AI-based 
algorithms to detect data patterns that humans cannot makes it challenging to track and monitor the 
bases for AI-based algorithms’ decisions or classifications and to explain how these algorithms reach 
their conclusions. 
 
Legal Issues With Using Artificial Intelligence in Lending 
 
Legal issues related to the use of artificial intelligence in lending generally fall into one of three areas: (1) 
fair lending; (2) consumer reporting; and (3) unfair, deceptive, or abusive acts or practices. Each is 
discussed below. 
 
Fair Lending 
 
The Equal Credit Opportunity Act, or ECOA, and its implementing regulation, Regulation B, prohibit 
creditors from discriminating against any applicant for credit in any aspect of a credit transaction on a 
prohibited basis, such as race, color, religion, national origin, sex, marital status or age.[3] The 
prohibition against discrimination applies across the entire life cycle of the loan from the application 
process to servicing to collections. Discrimination may result from a creditor treating applicants 
differently on a prohibited basis (disparate treatment)[4] or from a creditor’s facially neutral practice 
that has a disproportionately negative impact on a protected class of applicants (disparate impact).[5] 
Regulation B also extends to pre-application marketing by prohibiting creditors from discouraging 
applicants or prospective applicants from applying for credit on a prohibited basis.[6] 
 
Discriminatory Factors or Proxies 
 
To comply with fair lending laws, AI-based lending algorithms cannot consider discriminatory factors, 
such as race, national origin or gender, or proxies for discrimination, such as geography or level of 
education. A key fair lending challenge is to prevent AI-based lending algorithms from identifying and 
considering proxies for discrimination — even as these dynamic algorithms gain experience, refine their 
rules and evolve.[7] 
 
Discriminatory factors or proxies may be introduced into AI-based lending algorithms in at least four 
ways. First, the initial programming instructing the algorithm to identify patterns and translate those 
patterns into new rules is a function of extensive human judgments, which may introduce human biases 
into the algorithm’s DNA. 
 
Second, most AI-based lending applications follow a practice of “supervised learning” where human 
monitors track performance, provide feedback and, where necessary, correct the decisions reached by 
the AI algorithm. Although such supervision and oversight is essential for the reasons described below, it 
also creates a risk that human-initiated course corrections may introduce biases or that close or unusual 
cases which prompt judgmental overrides may assume undue prominence in the algorithm’s rules. 
 
Third, absent human intervention, an AI-based lending algorithm refines its rules through the continual 
analysis of large amounts of data. In this process, an algorithm may identify and consider data patterns 
or relationships that correlate with a proxy for a prohibited basis. The fact that AI-based lending 
algorithms evaluate large amounts of nontraditional data and identify complex relationships between 
multiple data points amplifies the risk that one or more AI-based rules may correlate with a proxy for a 
prohibited basis. 
 



 

 

Fourth, the performance of an AI-based lending algorithm depends upon the quality and quantity of 
data it evaluates. Fair lending risks can arise if the data evaluated by the algorithm is not robust or 
representative of certain protected classes of applicants or reflects past discrimination and biases. For 
example, some AI-based facial- and voice-recognition algorithms used for customer service and identity 
verification reportedly do not perform as well with racial minorities and nonnative English speakers, 
which could result in discrimination.[8] 
 
Adverse Action Reason Codes 
 
When a creditor denies an application for credit or takes other adverse action against an applicant, it 
must provide an adverse action notice to the applicant and either provide or make available upon 
request a statement of the specific reasons for the action taken.[9] Producing a statement of specific 
reasons, or adverse action reason codes, is perhaps the most vexing compliance challenge for the use of 
AI-based algorithms to make lending decisions. 
 
AI-based algorithms are dynamic, not static; they modify their rules, including decision-making criteria, 
over time based on experience gained from evaluating large amounts of data. These algorithms also 
evaluate complex patterns and relationships among multiple data points, making it difficult to isolate 
one or more decisive factors in any decision. For these reasons, AI-based algorithms do not lend 
themselves to generating adverse action reason codes. 
 
Nevertheless, AI-based algorithms cannot be used to make credit underwriting decisions unless the 
creditor is able to produce a statement of specific reasons for the adverse action taken. It is imperative 
that creditors seeking to use AI-based algorithms for credit underwriting develop programs to identify, 
extract and generate the primary reasons for the algorithm’s decisions, regardless of the complexity of 
the algorithm’s data analysis and the dynamic, evolving nature of the algorithm’s rules. 
 
Classification of AI-Based Algorithms 
 
Regulation B differentiates between two types of systems for evaluating credit applicants. Empirically 
derived, demonstrably and statistically sound, credit scoring systems are systems based on data derived 
from empirical comparisons of recent credit applicants that are developed for evaluating 
creditworthiness using accepted statistical methodologies and periodically revalidated and adjusted to 
maintain predictive ability.[10] Regulators strongly prefer that creditors use empirically derived credit 
scoring systems to eliminate human judgment and bias from credit underwriting. All other credit 
underwriting systems are judgmental systems.[11] 
 
AI-based credit underwriting or credit scoring algorithms share attributes of both empirically derived 
credit scoring systems and judgmental systems. Like empirically derived credit scoring systems, AI-based 
lending algorithms result in automated decision-making based on empirical comparisons of data without 
human intervention. But, like judgmental systems, these algorithms simulate human judgment and 
change based on experience. Further, the dynamic and complex data analyses performed by AI-based 
algorithms may not lend themselves to periodic revalidation and adjustment in the same way as static 
credit scoring systems. Therefore, it is unclear whether regulators will treat such AI-based algorithms as 
empirically derived credit scoring systems or judgmental systems. 
 
Consumer Reporting 
 
The Fair Credit Reporting Act, or FCRA, governs the sale of consumer reports by consumer reporting 



 

 

agencies.[12] Credit scores are consumer reports regulated by the FCRA that summarize large volumes 
of data to rank-order consumers based on risk. Creditors routinely rely on credit scores to make 
underwriting decisions. 
 
Discriminatory Factors or Proxies 
 
Given the central role credit scores play in credit underwriting, score developers have built deterministic 
credit scoring models or algorithms that do not consider prohibited bases, such as race, national origin 
or gender, or known proxies for prohibited bases, such as geography or education level. Credit scoring 
algorithms, like credit underwriting algorithms, must generate credit scores untainted by discriminatory 
bias. In fact, credit score developers warrant that their models comply with fair lending laws and do not 
take into consideration prohibited bases. 
 
Like traditional credit scoring models, AI-based credit scoring algorithms cannot consider prohibited 
bases or their proxies. As with credit underwriting algorithms discussed above, ensuring that AI-based 
credit scoring algorithms do not consider such impermissible factors is complicated by the dynamic and 
iterative nature of AI-based algorithms and their evaluation of nontraditional data, detection of complex 
patterns or relationships between disparate data elements, and automatic refinement of algorithmic 
rules based on experience. 
 
Key Factors Affecting the Credit Score 
 
Creditors must disclose credit scores to applicants when they deny credit applications based in whole or 
in part on a score.[13] Consumer reporting agencies also must disclose credit scores to consumers upon 
request.[14] Any such disclosure of a credit score to a consumer must be accompanied by up to four key 
factors that adversely affected the credit score.[15] 
 
Identifying and generating the key factors that adversely affected a credit score generated by an AI-
based credit scoring algorithm poses the same challenges as generating adverse action reason codes, as 
discussed above. As dynamic AI-based credit scoring algorithms learn and recalibrate the scoring rules, 
score developers must ensure that such algorithms can generate the key factors that adversely affected 
the score even as the algorithm’s decision-making process and rule set evolve. 
 
Unfair, Deceptive, or Abusive Acts or Practices 
 
Federal and state laws prohibit unfair, deceptive, or, in some cases, abusive acts or practices, or UDAAP. 
These include Section 1036 of the Consumer Financial Protection Act of 2010, Section 5 of the Federal 
Trade Commission Act and numerous state laws.[16] Unfair acts or practices cause or are likely to cause 
substantial injury to consumers (generally monetary harm) that consumers cannot reasonably avoid, 
and where the injury is not outweighed by benefits to the consumer or to competition.[17] Deceptive 
acts or practices involve material representations, omissions, acts or practices that are likely to mislead 
a consumer acting reasonably under the circumstances.[18] Abusive acts or practices materially 
interfere with a consumer’s ability to understand a term or condition of a consumer financial product or 
service or take unreasonable advantage of a consumer’s lack of understanding of material risks, costs or 
conditions, the consumer’s inability to protect his or her interests, or the consumer’s reasonable 
reliance on the provider to act in the consumer’s interests.[19] 
 
It is difficult to predict the ways that AI-based lending algorithms could lead to allegations of UDAAP 



 

 

violations. The examples that follow illustrate a few scenarios where the use of AI-based lending 
algorithms might raise UDAAP issues: 

 Generating credit denials based on reasons that appear arbitrary with no clear nexus to 
creditworthiness, such as various social media metrics; 

 Subjecting nonnative English-speakers to greater scrutiny when opening deposit accounts based 
on the poor performance of fraud detection and voice recognition algorithms with those 
populations; 

 Penalizing consumers for engaging in certain types of transactions or for using certain types of 
service providers; or 

 Providing inaccurate or misleading disclosures or other information in AI-generated 
advertisements or customer service chatbots. 

 
Practical Tips 
 
The legal challenges described above associated with using AI-based lending algorithms should not be 
viewed as showstoppers. Creditors and others performing lending-related functions can take steps to 
implement AI-based algorithms in their lending programs while minimizing legal risk. Practical steps to 
consider include: 

1. Involving legal and compliance early in the assessment and development process for AI-based 
lending algorithms, and on an ongoing basis, to spot potential issues. 

2. Using AI-based algorithms initially to make lending decisions only for persons who otherwise 
would be denied credit using traditional credit underwriting tools. The use of AI to expand 
access to credit for underserved borrowers likely will find favor with regulators. 

3. Using AI-based algorithms for purposes aligned with regulatory objectives, such as fraud 
prevention and compliance with know-your-customer requirements. Again, regulators will tend 
to be receptive to such uses. 

4. Starting small by applying AI-based algorithms to a small percentage of customer base. This 
pilot-based approach enables the creditor to gather data, gain experience, test performance and 
make adjustments before a more extensive rollout. 

5. Conducting validation testing, including fair lending and UDAAP testing, for all AI-based lending 
algorithms. 

o Testing should occur before implementation and periodically after implementation to 
validate and revalidate performance. 

o Testing should be undertaken for each expected use case. For example, do not use an 
AI-based algorithm validated for fraud screening and apply it to credit underwriting 
without further testing specifically focused on credit underwriting. 



 

 

6. Monitoring algorithm performance and making a person or a team responsible for supervising 
and adjusting AI-generated outcomes, as necessary, to avoid results that appear discriminatory 
or arbitrary. Judgmental overrides will continue to play an important role even as automated AI-
based decisions become more commonplace. 

 
Conclusion 
 
Advances in AI create numerous opportunities for constructive applications in the lending context, as 
noted in the Treasury Department’s fintech report. The Treasury Department’s recommendation that 
financial regulators not impede, but provide clarity to facilitate, AI testing and deployment sends a 
positive message. Despite the Treasury Department’s admonition, however, it remains essential to 
recognize potential legal and regulatory risks and develop appropriate strategies for managing those 
risks before launching AI-based lending applications. 
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